## TECHNICAL NOTES AND SHORT PAPERS

## On a Problem in Elementary Number Theory and a Combinatorial Problem

By P. Erdös

In a recent paper [1] I considered among others the following little problem: Denote by $f_{t}(n)$ the smallest integer $l$ so that if

$$
1 \leqq a_{1}<a_{2}<\cdots<a_{l} \leqq n, \quad l=f_{t}(n)
$$

is an arbitrary sequence of integers one can always find $t a$ 's $a_{i_{1}}, \cdots, a_{i_{t}}$ which have pairwise the same greatest common divisor. I proved in [1] that for fixed $t$

$$
\begin{equation*}
f_{t}(n)<\frac{n}{\exp \left[(\log n)^{1 / 2}\right]^{-\epsilon}} . \tag{1}
\end{equation*}
$$

Recently, I observed that using a combinatorial theorem due to Rado and myself (1) can be considerably improved and it might, in fact, be possible to obtain the correct order of magnitude for $f_{t}(n)$. The combinatorial theorem in question states as follows [2]: Let $g(k, t)$ be the smallest integer so that if $A_{1}, \cdots, A_{s}$, $s=g(k, t)$, are sets each having $k$ or fewer elements then there are always $t A$ 's $A_{i_{1}}, \cdots, A_{i_{t}}$ which have pairwise the same intersection. We have

$$
\begin{equation*}
g(k, t)<k!(t-1)^{k+1} \tag{2}
\end{equation*}
$$

We conjectured that (2) can be improved to ( $c_{1}, c_{2}, \cdots$ are absolute constants)

$$
\begin{equation*}
g(k, t)<c_{1}^{k}(t-1)^{k+1} \tag{3}
\end{equation*}
$$

The conjectured (3) would have applications to several questions in number theory. It is not difficult to show that

$$
\lim _{k=\infty} g(k, t)^{1 / k}
$$

exists, but I cannot show that it is finite.
Now we prove the following:
Theorem. For every $t$ and $\epsilon>0$ there is an $n_{0}$ so that for all $n>n_{0}(t, \epsilon)$,

$$
\begin{equation*}
2^{c_{t} \log n / \log \log n}<f_{t}(n)<n^{3 / 4+\epsilon} . \tag{4}
\end{equation*}
$$

First we prove the upper bound in (4).
Let $1 \leqq a_{1}<a_{2}<\cdots<a_{l} \leqq n, l=\left[n^{3 / 4+\epsilon}\right]$ be an arbitrary sequence of integers. We split the $a$ 's into two classes. In the first class are the $a$ 's which have at least

$$
\left[\frac{\log n}{4 \log \log n}\right]=u
$$

distinct prime factors. Denote by $w_{1}, w_{2}, \cdots$ the squarefree integers not exceeding $n$ which have exactly $u$ prime factors. Clearly every number of the first class is a multiple of some $w_{i}$, hence the number of integers of the first class is by a simple calculation at most

$$
\begin{aligned}
\sum_{i} \frac{n}{w_{i}} & <n \cdot \sum_{p_{i} \leqq n}\left(\frac{1}{p_{i}}\right)^{u} / u!<n\left(\log \log n+c_{2}\right)^{u} / u! \\
& <n\left(e\left(\log \log n+c_{2}\right)\right)^{u} / u!<\frac{1}{2} \cdot n^{3 / 4+\epsilon}
\end{aligned}
$$

for every $\epsilon$ if $n$ is sufficiently large.
Hence the number of integers of the second class is greater than $\frac{1}{2} \cdot n^{3 / 4+\epsilon}$. Consider the (unique) factorization

$$
\begin{equation*}
a_{i}=A_{i} B_{i}, \quad\left(A_{i}, B_{i}\right)=1, \tag{5}
\end{equation*}
$$

where each prime factor of $A_{i}$ occurs with an exponent greater than one and $B_{i}$ is squarefree. It is well known [3] and easy to prove that the number of integers $m \leqq n$ all of whose prime factors occur with an exponent $>1$ is less than $c_{3} n^{1 / 2}$. Hence there are at least $\left(1 / 2 c_{3}\right) n^{1 / 4+\epsilon}$ integers $a_{i_{j}}$ with the same $A_{i}$ :

$$
\begin{equation*}
a_{i_{j}}=A_{i_{j}} B_{i_{j}}, \quad 1 \leqq j \leqq r, \quad r>\frac{1}{2 c_{3}} n^{1 / 4+\epsilon}, \quad A_{i_{j}}=A \tag{6}
\end{equation*}
$$

Clearly the number of prime factors of the squarefree number $B_{i}$ is less than $u$. A simple computation gives, for $n>n_{0}(\epsilon, t)$,

$$
\frac{1}{2 c_{3}} n^{1 / 4+\epsilon}>u!(t-1)^{u+1} \quad\left(u=\left[\frac{1}{4} \frac{\log n}{\log \log n}\right]\right) .
$$

Hence from (2) there are at least $t B$ 's and hence by (6) at least $t a$ 's which have pairwise the same common factor, which proves the upper bound in (4).

To prove the lower bound in (4) put

$$
k=\left[\frac{\log n}{3 \log \log n}\right]
$$

and denate by $p_{i}^{(j)}, 1 \leqq i \leqq 3,1 \leqq j \leqq k$, the first $3 k$ primes. Put

$$
b_{1}{ }^{(j)}=p_{1}{ }^{(j)} p_{2}{ }^{(j)}, \quad b_{2}{ }^{(j)}=p_{1}{ }^{(j)} p_{3}{ }^{(j)}, \quad b_{3}{ }^{(j)}=p_{2}{ }^{(j)} p_{3}{ }^{(j)} .
$$

The $a$ 's are the $3^{k}$ integers of the form

$$
\prod_{j=1}^{k} b_{i}{ }^{(j)}, \quad i=1,2, \text { or } 3
$$

A simple computation using the prime number theorem (or a more elementary result) shows that all the $a$ 's are less than $n$. Further, obviously no three of them have pairwise the same greatest common divisor, also $f_{t}(n) \geqq f_{3}(n)$, thus the lower bound in (4) is proved and the proof of our theorem is complete.

The inequality (3) would easily imply

$$
\begin{equation*}
f_{t}(n)<\left(c_{t}^{\prime}\right)^{\log n / \log \log n} \tag{7}
\end{equation*}
$$

The proof of (7) (using the unproved conjecture (3)) would be similar to the proof of our theorem. Instead of the decomposition (5) we would have to put $a_{i}=$ $C_{i} D_{i}$ where all prime factors of $C_{i}$ are less than $\log n$ and all prime factors of $D_{i}$ are $\geqq \log n$. We suppress the details.

Very likely

$$
\begin{equation*}
\lim _{n=\infty} \log \left(f_{t}(n)\right) \cdot \frac{\log \log n}{\log n} \tag{8}
\end{equation*}
$$

exists and perhaps it might be possible to determine its value, but it will probably not be possible to express $f_{t}(n)$ by a simple function of $n$ and $t$ (even for $t=3$ ).

If $t$ is large compared to $n$ our method used in the proof of our theorem no longer gives a good estimation, but it is not difficult to prove by a different method the following result. Let $1 \leqq a_{1}<a_{2}<\cdots<a_{l} \leqq n, l=C n$ be given, then there are always $n^{\epsilon}$ integers $a_{i_{1}}, \cdots, a_{i_{r}}$ which have pairwise the same common factor ( $\epsilon_{C}$ depends only on $C$ ), but we do not investigate this question here any further.

I have not been able to decide if to every $\alpha>0$ there is an $n_{0}(\alpha)$ so that if $n>n_{0}(\alpha)$ and

$$
1 \leqq a_{1}<a_{2}<\cdots<a_{l} \leqq n, \quad l \geqq \alpha n
$$

is any sequence of integers, then there always are three $a$ 's which have pairwise the same least common multiple. This is certainly true (and trivial) if $\alpha$ is close enough to 1 ; perhaps the whole question is trivial and I overlooked an obvious approach.

McMaster University
Hamilton, Ontario

1. P. Erdös, "Extremal problems in number theory," Mat. Lapok, v. 13, 1962, p. 228-255. (Hungarian)
2. P. Erdös \& R. Rado, "Intersection theorems for systems of sets," J. London Math. Soc., v. 35, 1960, p. 85-90.
3. P. Erdös \& G. Szekeres, "Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem," Acta Sci. Math. (Szeged), v. 7, 1934, p. 94-102.

## On Maximal Gaps between Successive Primes

## By Daniel Shanks

In personal correspondence Paul A. Carlson asked the author if he could give a rough "ball-park" estimate of where one would first find a run of a million or more consecutive composite integers. For notation let us define $p(g)$ to be the first prime that follows a gap of $g$ or more consecutive composites. Thus $p(1)=5, p(2)=$ $p(3)=11, p(4)=p(5)=29, p(6)=p(7)=97$, etc. We seek to estimate $p\left(10^{6}\right)$. Conversely, by $g(n)$ we mean the largest gap that occurs below any prime $p \leqq n$. We may call these values of $g$ maximal gaps.

That $p(g)$ is finite for every $g$ is well known. The famous proof by Lucas [1] merely notes that the $g$ consecutive integers:

$$
(g+1)!+2,(g+1)!+3,(g+1)!+4, \cdots,(g+1)!+g+1
$$

Received April 27, 1964.

